
I n t r o d u c t i o n t o O O P w i t h C + +

CH
C H A P T E R 2

S t a r t i n g t o P r o g r a m

In this chapter you will learn

• The first C++ program

• Object diagrams

• Sequential execution

• C++ syntax

• The Turtle class
C. Thomas Wu
© All Rights Reserved 1998

1 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

The First Program

• Our first C++ program doesn’t do very much, but it illustrates a
few key aspects of a C++ program.

// Program One: A simple program using an OKBox.

#include "GUIObj.h"

void main ()

{

OKBox myBox;

myBox.Display("Hello, world!");

}

• Running this program will display
C. Thomas Wu
© All Rights Reserved 1998

2 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

u

st

• We will explain the program line by line:

Line 1 is a comment.

• Comments do not affect the way the program works, but they
can make it easier for others to understand what your program
does and how it does it. More important, comments can help yo
to understand your own program weeks (or even hours) after
you write it.

• When you have more than one line of comments, each line mu
be preceded by double slashes (//).

• Another way to put a comment in the program is to precede the
comment with /* and terminate it with */ . A comment can
extend beyond one line if you surround it with /* and */ .

/* This is a multiline
comment. Your comment can go beyond
one line. */

// Program One: A simple program using an OKBox.

#include "GUIObj.h"

void main ()
{

OKBox myBox;
myBox.Display("Hello, world!");

}

Line1
C. Thomas Wu
© All Rights Reserved 1998

3 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

d
Line 2 is an include instruction

• Line 2 informs the compiler that the program uses things define
in a header file, or more simply a header, named GUIObj.h . This
header file contains predefined program components, one of
which is an object.

• As a convention, we use a suffix .h for a header file name. In
this sample program, we use an OKBox object defined in this
header file.

• In this book we will use several headers supplied by the C++
compiler as well as GUIObj.h and Turtle.h , the headers we have
written specifically for this book. For the earlier part of this
book, you will only use the predefined objects, but later, you
will be able to define your own objects.

// Program One: A simple program using an OKBox.

#include "GUIObj.h"

void main ()
{

OKBox myBox;
myBox.Display("Hello, world!");

}

Line2
C. Thomas Wu
© All Rights Reserved 1998

4 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

o
Line 3 is a function declaration

• Every C++ program must have one function named main . We
call this function the main function. The function serves as the
main controller of a program and is also called the main
program.

• Inside the parentheses [()], we list input values to a function.
Since there is no input to this main function, there is nothing
inside the parentheses. Normally, we do not provide any input t
the main function.

• The output, or result of a C++ function, is called a return value.
A function in mathematics must return a value, but a C++
function does not have to return a value.

• A C++ function that does not return a value is called a void
function and designated as such by the word void in front of the
function name. The main function of this sample program is a
void function as are the main functions of all other sample
programs in this book.

// Program One: A simple program using an OKBox.

#include "GUIObj.h"

void main ()
{

OKBox myBox;
myBox.Display("Hello, world!");

}

Line3
C. Thomas Wu
© All Rights Reserved 1998

5 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

• Other than this main function, which must be named main , we
can name functions anyway we want (as long as the name
doesn’t violate the rule given later). We call these names
identifiers.

Line 4 is the beginning of a function body

• Line 4 signals the beginning of a function body. Since this is the
main function, it signals the beginning of the program. A
function body consists of two components—declarations and
commands. In this program we have only one declaration (line
5) and one command (line 6). A function body is terminated by
the right brace [}] (line 7).

// Program One: A simple program using an OKBox.

#include "GUIObj.h"

void main ()
{

OKBox myBox;
myBox.Display("Hello, world!");

}

Line4
C. Thomas Wu
© All Rights Reserved 1998

6 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

s:

Line 5 is declaration

• Line 5 is a declaration that declares the identifier myBox as the
name of an OKBox object. We normally say, “myBox is an OKBox
object,” for short. If you need to use more than one object, say
three, then you need three unique identifiers declared as follow

OKBox myBox, yourBox, herBox;

• Every declaration and command in C++ must be terminated with
a semicolon [;].

// Program One: A simple program using an OKBox.

#include "GUIObj.h"

void main ()
{

OKBox myBox;
myBox.Display("Hello, world!");

}

Line5
C. Thomas Wu
© All Rights Reserved 1998

7 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

.

n

he
Line 6 is a command

• Line 6 is a command that “commands” the OKBox object myBox to
display the message Hello, world! . We can think this command
as sending of a message Display to the myBox object. Receiving
this message, the myBox object carries out the requested task.

• For an object to be able to respond to a message, a
corresponding function must be defined for the object. This
function tells the object exactly what to do to carry out the task
Many functions are normally defined for an object, and this
collection of functions defines the “behavior” of an object. If no
corresponding function is available to the received message, a
error would result.

• An input value to a function is called an argument. If a function
has two or more arguments, they are separated by commas. T
general format for calling an object’s function is

object_identifier.function_name (argument_list) ;

// Program One: A simple program using an OKBox.

#include "GUIObj.h"

void main ()
{

OKBox myBox;

myBox.Display("Hello, world!");
}

Line6
C. Thomas Wu
© All Rights Reserved 1998

8 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

no

al
• The left and right parentheses must be present even if there is
argument. Because of the period between the object identifier
and its function name, this style of calling an object’s function is
called dot notation.

Line 7 is the beginning of a function body

Object Diagrams

• It is easier to understand a program when we can see a graphic
representation of the program’s objects and their interactions.

// Program One: A simple program using an OKBox.

#include "GUIObj.h"

void main ()
{

OKBox myBox;
myBox.Display("Hello, world!");

}Line7

Display

myBox
main

"Hello, World"

Object Diagram for Program One
C. Thomas Wu
© All Rights Reserved 1998

9 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

ich

ten

ox

ts a
1. In an object diagram, objects are shown using an object icon, wh
is a rectangle with rounded corners.

2. The program itself is represented as an object. The name is writ
inside the rectangle because this name is not used by any other
objects. It is mainly for our own reference.

3. An object’s function is listed on the edge of the object. (Display is a
function of myBox .) The name of an object is written outside of the b
to signify that the name is visible to other objects and is used by
them.

4. An arrow from one object to a function in another object represen
function call. Arguments in a function call are written along the
arrow.

main

myBox

Display

Display
"Hello, World"
C. Thomas Wu
© All Rights Reserved 1998

10 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

r,

.
Sequential Execution

• Statements in a program are executed in the order they appea
from top to bottom. We can expand our first program to illustrate
this sequential order of execution.

//Program Two: Another simple program using an OKBox.

#include "GUIObj.h"

void main ()

{

OKBox myBox;

myBox.Display("Hello, World!");

 myBox.Display("Welcome to Object Land");

 myBox.Display("May you have fun and learn a lot!");

 myBox.Display("Goodbye");

}

• We have four command statements, making four function calls
When this program is executed, it initially displays the same
message box as the first program (by the execution of the first
statement myBox.Display("Hello, world!")).
C. Thomas Wu
© All Rights Reserved 1998

11 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

of
he

• When the user clicks the OK button, another message box
appears, because clicking the button completes the execution
the first statement and allows the second one to be executed. T
execution of the second statement causes myBox to display the
second message.

• Clicking the OK button on this box causes the third message to
appear.
C. Thomas Wu
© All Rights Reserved 1998

12 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

m

• Clicking the OK button on this box causes the fourth statement
to be executed and produces the following message.

• Clicking OK on this last message box terminates the program
because it completes the execution of the final statement in the
program.

• This expanded program shows how the statements of a progra
are executed one at a time. It also shows more about what an

OKBox’s Display function actually does. Notice that when an OKBox
displays text, it adjusts the size of the box to accommodate the
length of the text. Also notice that the execution of a Display
function isn’t completed until you click the OK button.

C++ Syntax

• The grammatical rules of the C++ language called syntax rules
dictate the structural validity of C++ programs. These
grammatical rules collectively enforce the valid syntax for C++
programs.

• To be precise and concise, we usually show syntax rules for
programming languages as diagrams or in some stylized form.
C++ syntax rules are normally stated in a stylized form called a
C. Thomas Wu
© All Rights Reserved 1998

13 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH
Backus Naur Form, or BNF for short, which we shall use in this
book.

• Let’s look at the BNF rules for the C++ identifiers.

identifier
letter character-listopt

character-list
character
character character-list

character
digit
letter
_

digit
0 | 1 | ... | 9

letter
a | b | ... | z | A | B | ... | Z

• Each of the five rules are listed above defines a syntax category
of the C++ language. A syntax category with the subscript opt
denotes an optional element.

1

2

3

4

5

C. Thomas Wu
© All Rights Reserved 1998

14 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

s

f
• Rule 1: An identifier is a letter followed by an optional
character-list.

• Rule 2: A character list is a character OR a character followed
by a character list.

• Rule 3: A character is either digit, letter, or a special underscore
symbol (_).

• Rule 4: A digit is either 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. The vertical
bar (|) is another way of showing alternatives.

A three-dot symbol (...) is used to denote a sequence of value
without explicitly listing them.

• Rule 5: A letter is any one of the alphabetic characters.

• The five rules collectively state that an identifier is a sequence o
letters, digits, or underscore characters with the first character
being a letter.

• Here are some valid (top) and invalid (bottom) identifiers
according to the above syntax rules.

MyBox Box2 sam x Address temperature Bill_Clinton

2Box First.Name ?okay? Bill-Clinton Sam*Spade

• In some programming languages (e.g., Pascal and Ada),
lowercase and uppercase letters are not distinguished. These
languages consider the identifiers HELLO , hello , and Hello to be
C. Thomas Wu
© All Rights Reserved 1998

15 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

n

s
the same, for example. C++, however, does distinguish betwee
cases.

• Languages that distinguish between lowercase and uppercase
letters are called case-sensitive languages, and those do not are
called case-insensitive languages. This type of information is
not stated with the syntax rules.

• Another type of information that explicitly is the length of
identifiers. The syntax rules place no limit on the number of
characters we use for the identifiers. This freedom, of course, i
not acceptable in practice. A compiler puts some limit on the
number of characters that can be used for an identifier.

• The third piece of information that is not stated with the
production rules for an identifier is the exclusion of certain
words called reserved words. Reserved words have special
meaning and purpose in C++, and they cannot be used as
identifiers. Table below lists the C++ reserved words.

C++ reserved words

asm continue float new short try

auto default for operator signed typedef

break delete friend overload sizeof union

case do goto private static unsigned

catch double if protected struct virtual

char else inline public switch void

class enum int register this volatile

const extern long return template while
C. Thomas Wu
© All Rights Reserved 1998

16 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

y

e

ld

s
• The BNF rules above are also known as production rules
because they are rules for “producing” more syntax categories
from a given syntax category. In other words, a production rule
explains how to expand a syntax category into other syntax
categories.

• We say a C++ program is syntactically correct if we can produce
a given program by applying the production rules, starting from
the top-most syntax category program. A syntax category is also
called nonterminal because we can expand it further (i.e., we can
produce more syntax categories from a given syntax category b
applying some production rule to it). Reserved words,
identifiers, and some other characters, which we have not yet
learned, are called terminals because we cannot expand them
any further (i.e., there are no further production rules that can b
applied to them).

• Different font styles are used in the syntax rules. Syntax
categories, or nonterminals, are shown in the italic font with all
lowercase letters. Reserved words, characters, and special
symbols, such as parentheses and braces, are shown in the bo
fonts.

• Let’s look at a sample production. Keep in mind that we do not
use these production rules to actually write a C++ program.
These rules are for a compiler to verify whether a given program
is syntactically correct. Here’s an example. We start production
from a single nonterminal identifier.

identifier

===>letter character-list
C. Thomas Wu
© All Rights Reserved 1998

17 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

e

,
===>J character-list

===>J character character-list

===>J letter character-list

===>J o character-list

===>J o character

===>J o letter

===>J o e

(Note: The actual identifier generated here is Joe. The spaces
between the letters in the example is to make the identifier mor
readable.)

The Turtle Object

• In the early 1970s Seymour Papert at MIT built a programmable
mechanical “turtle” that could move around a drawing board,
pushing a pen to draw all sorts of shapes.

• We use turtle objects to illustrate many new concepts in this
book. The Turtles.h header file defines a Turtle object that
behaves very much like Papert’s mechanical turtle. Here is a
simple program that uses a Turtle object to draw a square.

// Program Square: A program that draws a square.

#include "Turtles.h"
C. Thomas Wu
© All Rights Reserved 1998

18 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH
void main ()

{

Turtle myTurtle;

myTurtle.Init(260,180); //Start from location (260,180).

 myTurtle.Move(50); // Draw the bottom of the square.

 myTurtle.Turn(90); // Turn to draw the right side.

 myTurtle.Move(50); // Draw the right side.

 myTurtle.Turn(90); // Turn to draw the top.

 myTurtle.Move(50); // Draw the top.

 myTurtle.Turn(90); // Turn to draw the left side.

 myTurtle.Move(50); // Draw the left side.

 myTurtle.Done();

}

C. Thomas Wu
© All Rights Reserved 1998

19 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

s

s

Here is what the above program displays when it is executed.

• This program makes nine calls to myTurtle functions. We can
represent this program as an object diagram, but the diagram i
somewhat cluttered.

• For all but the smallest programs, the number of function calls i
too many to be usefully depicted in an object diagram. For this

main

myTurtle

Init

Move

Done

Turn

260,180
50

90 50

50
90

90

50
C. Thomas Wu
© All Rights Reserved 1998

20 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

h

reason, individual function calls are not normally included as
arrows in object diagrams. Instead of drawing an arrow for eac
function call, we draw only a single arrow from object A to B if
object A makes a call to object B, regardless of the number of
calls made. With this convention, the previous object diagram
becomes

• The turtle’s drawing board is a window with a drawing space
consisting of 612 x 433 dots, or pixels (picture elements).

main
myTurtle

pixel 260,180

pixel 611,432

pixel 0,0

433 pixels vertically
numbered 0 – 432

612 pixels horizontally numbered 0 – 611

90

0 degrees180

270
C. Thomas Wu
© All Rights Reserved 1998

21 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

l
,

z-
e-
en

 is
the
ng

-

es

o
e.

es
• The pixels are arranged in 433 rows and 612 columns so that
each pixel has a column number (x coordinate) and a row
number (y coordinate).

• The coordinates of the upper-left pixel are 0,0 and the
coordinates of the lower-right pixel are 611,432. The Turtle
draws in the drawing board by setting pixels to different colors.
Initially all the pixels are white.

• When the turtle moves and its pen is down, it will set each pixe
it moves across to the color of the pen. The pen is initially down
and its color is initially black. If we wish to start with a different
color, then we have to set its color by using the ChangePenColor
function.

• Here are the descriptions of the Turtle primary functions (a
complete listing is provided in the Appendix).

Init(x,y) Opens the drawing board window and initiali
es the turtle by facing it to the right (i.e., 0 d
grees) at pixel x,y with its pen down and p
color BLACK.

Move(distance) Moves the turtle distance pixels in the direc-
tion the turtle is currently heading. If the pen
down, the pixels it moves across are set to
current pen color. If the pen is up, then nothi
is drawn.

Turn(angle) Turns the turtle angle degrees counterclock
wise.

TurnTo(angle) Turns the turtle so that its heading becom
angle .

GoToPos(x,y) Moves the turtle from its current position t
pixel x,y. The turtle’s heading does not chang
If the pen is down, any pixels the turtle mov
across changes to the current pen color.
C. Thomas Wu
© All Rights Reserved 1998

22 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

dy

l-

ro-
e-

 x
PenUp() Sets the turtle’s pen position up. If it is alrea
up, then this function does nothing.

PenDown() Sets the turtle’s pen position down. If it is a
ready down, then this function does nothing.

ChangePenColor(clr)

Changes the turtle’s pen color to clr . Possible
values for clr are BLACK, BLUE, GREEN, CYAN,
RED, MAGENTA, LIGHTGRAY, DARKGRAY, YEL-
LOW, WHITE, DARKRED, DARKGREEN, DARK-
BLUE, DUSTYBLUE, PURPLE.

Done() This statement is required at the end of the p
gram to make the drawing board window r
main on screen.

GetXY(x,y) Returns the current coordinates of the turtle in
and y.

Sample Programs Using Turtles

• Here are some sample programs that use a Turtle .
// Program Square2: A program that draws the square backward.

#include "Turtles.h"

void main ()

{

Turtle myTurtle;

myTurtle.Init(260,180);

 myTurtle.Move(-50);

 myTurtle.Turn(-90);
C. Thomas Wu
© All Rights Reserved 1998

23 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

t
 myTurtle.Move(-50);

 myTurtle.Turn(-90);

myTurtle.Move(-50);

 myTurtle.Turn(-90);

 myTurtle.Move(-50);

 myTurtle.Done();

}

• The next program also draws the same square but at a differen
position. The program uses the GoToPos function four times (the
heading of myTurtle does not change).

//Program Square3: A program that draws the square with

// the GoToPos functions.

#include "Turtles.h"

void main ()

{

Turtle myTurtle;

myTurtle.Init(260,180);

 myTurtle.GoToPos(310,180);

 myTurtle.GoToPos(310,230);

 myTurtle.GoToPos(260,230);
C. Thomas Wu
© All Rights Reserved 1998

24 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH
 myTurtle.GoToPos(260,180);

 myTurtle.Done();

}

• The final program uses the PenUp, PenDown, TurnTo , and Turn
functions to draw a house. After drawing the bottom square, the

Turtle draws a roof by moving into a position without drawing.
The numbered arrows show the order which the Turtle draws
the house.

//Program House: A program that draws a simple house.

#include "Turtles.h"

void main ()

{

Turtle t;

t.Init(260,180);

 // Draw the bottom square

t.Move(50); t.Turn(90);

1

2

3
4

5 6
C. Thomas Wu
© All Rights Reserved 1998

25 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

y

t

t.Move(50); t.Turn(90);

t.Move(50); t.Turn(90);

t.Move(50);

//Reposition t for the roof

 t.PenUp(); //don’t draw while repositioning

 t.GoToPos(260,130);

t.TurnTo(60);

t.PenDown();

//Now draw the roof

 t.Move(50); t.Turn(-120);

t.Move(50);

t.Done();

}

Object Behavior

• B. F. Skinner, a Harvard psychologist, was famous for his work
in behaviorism. According to Skinner, humans are nothing but
machines that exhibit well-defined responses to environmentall
controlled stimuli. His work in operant conditioning showed that
animals modify their behavior to adapt to new stimuli.

• Similar to a live turtle, our virtual turtle also exhibits well-
defined behavior. Our virtual turtle, of course, is not capable of
learning new behavior or adapting behavior on its own (at leas
not with our current state of computer science). In the case of
virtual turtles and other “computer” objects, their behaviors are
defined by the set of functions we attach to those objects.
C. Thomas Wu
© All Rights Reserved 1998

26 of 27 2 Starting to Program

I n t r o d u c t i o n t o O O P w i t h C + +

CH

o

d

f
• In addition to the set of functions, another aspect of objects als
affects their behavior. For example, consider the legs of a turtle
being tied. The turtle will not (cannot) respond to the stimuli in
the same manner as when its legs were not tied. Just as live
animals have different states, our computer objects also have
different states. Our virtual turtle, for example, could be in the
state of heading north with the pen down. Receiving a comman
in different states would result in a different response.

• A computer object has a set of attributes to keep track of its
state. A turtle, for example, has attributes such as heading, pen
color, pen status, and so forth. The set of values for these
attributes determines the state of a turtle.

• Some functions modify the attributes, thus affecting the state o
an object. For a Turtle object, functions such as Turn and

TurnTo change the direction, PenUp and PenDown change the pen
status, and ChangePenColor changes the pen color.
C. Thomas Wu
© All Rights Reserved 1998

27 of 27 2 Starting to Program

	CHAPTER 2 Starting to Program
	In this chapter you will learn
	• The first C++ program
	• Object diagrams
	• Sequential execution
	• C++ syntax
	• The Turtle class

	The First Program
	• Our first C++ program doesn’t do very much, but it illustrates a few key aspects of a C++ program.
	// Program One: A simple program using an OKBox.
	#include "GUIObj.h"
	void main ()
	{
	OKBox myBox;
	myBox.Display("Hello, world!");
	}

	• Running this program will display
	• We will explain the program line by line:
	Line 1 is a comment.
	• Comments do not affect the way the program works, but they can make it easier for others to und...
	• When you have more than one line of comments, each line must be preceded by double slashes (//).
	• Another way to put a comment in the program is to precede the comment with /* and terminate it ...
	comment. Your comment can go beyond
	one line. */

	Line 2 is an include instruction
	• Line 2 informs the compiler that the program uses things defined in a header file, or more simp...
	• As a convention, we use a suffix .h for a header file name. In this sample program, we use an O...
	• In this book we will use several headers supplied by the C++ compiler as well as GUIObj.h and T...

	Line 3 is a function declaration
	• Every C++ program must have one function named main. We call this function the main function. T...
	• Inside the parentheses [()], we list input values to a function. Since there is no input to ...
	• The output, or result of a C++ function, is called a return value. A function in mathematics mu...
	• A C++ function that does not return a value is called a void function and designated as such by...
	• Other than this main function, which must be named main, we can name functions anyway we want (...

	Line 4 is the beginning of a function body
	• Line 4 signals the beginning of a function body. Since this is the main function, it signals th...

	Line 5 is declaration
	• Line 5 is a declaration that declares the identifier myBox as the name of an OKBox object. We n...
	OKBox myBox, yourBox, herBox;

	• Every declaration and command in C++ must be terminated with a semicolon [;].

	Line 6 is a command
	• Line 6 is a command that “commands” the OKBox object myBox to display the message Hello, world!...
	• For an object to be able to respond to a message, a corresponding function must be defined for ...
	• An input value to a function is called an argument. If a function has two or more arguments, th...
	object_identifier.function_name (argument_list) ;

	• The left and right parentheses must be present even if there is no argument. Because of the per...

	Line 7 is the beginning of a function body
	Object Diagrams
	• It is easier to understand a program when we can see a graphical representation of the program’...
	1. In an object diagram, objects are shown using an object icon, which is a rectangle with rounde...
	2. The program itself is represented as an object. The name is written inside the rectangle becau...
	3. An object’s function is listed on the edge of the object. (Display is a function of myBox.) Th...
	4. An arrow from one object to a function in another object represents a function call. Arguments...

	Sequential Execution
	• Statements in a program are executed in the order they appear, from top to bottom. We can expan...
	//Program Two: Another simple program using an OKBox.
	#include "GUIObj.h"
	void main ()
	{
	OKBox myBox;
	myBox.Display("Hello, World!");
	myBox.Display("Welcome to Object Land");
	myBox.Display("May you have fun and learn a lot!");
	myBox.Display("Goodbye");
	}

	• We have four command statements, making four function calls. When this program is executed, it ...
	• When the user clicks the OK button, another message box appears, because clicking the button co...
	• Clicking the OK button on this box causes the third message to appear.
	• Clicking the OK button on this box causes the fourth statement to be executed and produces the ...
	• Clicking OK on this last message box terminates the program because it completes the execution ...
	• This expanded program shows how the statements of a program are executed one at a time. It also...

	C++ Syntax
	• The grammatical rules of the C++ language called syntax rules dictate the structural validity o...
	• To be precise and concise, we usually show syntax rules for programming languages as diagrams o...
	• Let’s look at the BNF rules for the C++ identifiers.
	• Each of the five rules are listed above defines a syntax category of the C++ language. A syntax...
	• Rule 1: An identifier is a letter followed by an optional character-list.
	• Rule 2: A character list is a character OR a character followed by a character list.
	• Rule 3: A character is either digit, letter, or a special underscore symbol (_).
	• Rule 4: A digit is either 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. The vertical bar (|) is another wa...
	A three-dot symbol (...) is used to denote a sequence of values without explicitly listing them.
	• Rule 5: A letter is any one of the alphabetic characters.
	• The five rules collectively state that an identifier is a sequence of letters, digits, or under...
	• Here are some valid (top) and invalid (bottom) identifiers according to the above syntax rules.
	MyBox Box2 sam x Address temperature Bill_Clinton
	2Box First.Name ?okay? Bill-Clinton Sam*Spade

	• In some programming languages (e.g., Pascal and Ada), lowercase and uppercase letters are not d...
	• Languages that distinguish between lowercase and uppercase letters are called case-sensitive la...
	• Another type of information that explicitly is the length of identifiers. The syntax rules plac...
	• The third piece of information that is not stated with the production rules for an identifier i...
	C++ reserved words
	asm
	continue
	float
	new
	short
	try
	auto
	default
	for
	operator
	signed
	typedef
	break
	delete
	friend
	overload
	sizeof
	union
	case
	do
	goto
	private
	static
	unsigned
	catch
	double
	if
	protected
	struct
	virtual
	char
	else
	inline
	public
	switch
	void
	class
	enum
	int
	register
	this
	volatile
	const
	extern
	long
	return
	template
	while

	• The BNF rules above are also known as production rules because they are rules for “producing” m...
	• We say a C++ program is syntactically correct if we can produce a given program by applying the...
	• Different font styles are used in the syntax rules. Syntax categories, or nonterminals, are sho...
	• Let’s look at a sample production. Keep in mind that we do not use these production rules to ac...
	===> letter character-list
	===> J character-list
	===> J character character-list
	===> J letter character-list
	===> J o character-list
	===> J o character
	===> J o letter
	===> J o e

	(Note: The actual identifier generated here is Joe. The spaces between the letters in the example...

	The Turtle Object
	• In the early 1970s Seymour Papert at MIT built a programmable, mechanical “turtle” that could m...
	• We use turtle objects to illustrate many new concepts in this book. The Turtles.h header file d...
	// Program Square: A program that draws a square.
	#include "Turtles.h"
	void main ()
	{
	Turtle myTurtle;
	myTurtle.Init(260,180); //Start from location (260,180).
	myTurtle.Move(50); // Draw the bottom of the square.
	myTurtle.Turn(90); // Turn to draw the right side.
	myTurtle.Move(50); // Draw the right side.
	myTurtle.Turn(90); // Turn to draw the top.
	myTurtle.Move(50); // Draw the top.
	myTurtle.Turn(90); // Turn to draw the left side.
	myTurtle.Move(50); // Draw the left side.
	myTurtle.Done();
	}

	Here is what the above program displays when it is executed.
	• This program makes nine calls to myTurtle functions. We can represent this program as an object...
	• For all but the smallest programs, the number of function calls is too many to be usefully depi...
	• The turtle’s drawing board is a window with a drawing space consisting of 612 x 433 dots, or pi...
	• The pixels are arranged in 433 rows and 612 columns so that each pixel has a column number (x c...
	• The coordinates of the upper-left pixel are 0,0 and the coordinates of the lower-right pixel ar...
	• When the turtle moves and its pen is down, it will set each pixel it moves across to the color ...
	• Here are the descriptions of the Turtle primary functions (a complete listing is provided in th...

	Sample Programs Using Turtles
	• Here are some sample programs that use a Turtle.
	// Program Square2: A program that draws the square backward.
	#include "Turtles.h"
	void main ()
	{
	Turtle myTurtle;
	myTurtle.Init(260,180);
	myTurtle.Move(-50);
	myTurtle.Turn(-90);
	myTurtle.Move(-50);
	myTurtle.Turn(-90);
	myTurtle.Move(-50);
	myTurtle.Turn(-90);
	myTurtle.Move(-50);
	myTurtle.Done();
	}

	• The next program also draws the same square but at a different position. The program uses the G...
	//Program Square3: A program that draws the square with
	// the GoToPos functions.
	#include "Turtles.h"
	void main ()
	{
	Turtle myTurtle;
	myTurtle.Init(260,180);
	myTurtle.GoToPos(310,180);
	myTurtle.GoToPos(310,230);
	myTurtle.GoToPos(260,230);
	myTurtle.GoToPos(260,180);
	myTurtle.Done();
	}

	• The final program uses the PenUp, PenDown, TurnTo, and Turn functions to draw a house. After dr...
	//Program House: A program that draws a simple house.
	#include "Turtles.h"
	void main ()
	{
	Turtle t;
	t.Init(260,180);
	// Draw the bottom square
	t.Move(50); t.Turn(90);
	t.Move(50); t.Turn(90);
	t.Move(50); t.Turn(90);
	t.Move(50);
	//Reposition t for the roof
	t.PenUp(); //don’t draw while repositioning
	t.GoToPos(260,130);
	t.TurnTo(60);
	t.PenDown();
	//Now draw the roof
	t.Move(50); t.Turn(-120);
	t.Move(50);
	t.Done();
	}

	Object Behavior
	• B. F. Skinner, a Harvard psychologist, was famous for his work in behaviorism. According to Ski...
	• Similar to a live turtle, our virtual turtle also exhibits well- defined behavior. Our virtual ...
	• In addition to the set of functions, another aspect of objects also affects their behavior. For...
	• A computer object has a set of attributes to keep track of its state. A turtle, for example, ha...
	• Some functions modify the attributes, thus affecting the state of an object. For a Turtle objec...

